// Copyright (C) 2009 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
// This code was adapted from code from the JAMA part of NIST's TNT library.
// See: http://math.nist.gov/tnt/
#ifndef DLIB_MATRIX_CHOLESKY_DECOMPOSITION_H
#define DLIB_MATRIX_CHOLESKY_DECOMPOSITION_H
#include "matrix.h"
#include "matrix_utilities.h"
#include "matrix_subexp.h"
#include <cmath>
#ifdef DLIB_USE_LAPACK
#include "lapack/potrf.h"
#endif
#include "matrix_trsm.h"
namespace dlib
{
template <
typename matrix_exp_type
>
class cholesky_decomposition
{
public:
const static long NR = matrix_exp_type::NR;
const static long NC = matrix_exp_type::NC;
typedef typename matrix_exp_type::type type;
typedef typename matrix_exp_type::mem_manager_type mem_manager_type;
typedef typename matrix_exp_type::layout_type layout_type;
typedef matrix<type,0,0,mem_manager_type,layout_type> matrix_type;
typedef matrix<type,NR,1,mem_manager_type,layout_type> column_vector_type;
// You have supplied an invalid type of matrix_exp_type. You have
// to use this object with matrices that contain float or double type data.
COMPILE_TIME_ASSERT((is_same_type<float, type>::value ||
is_same_type<double, type>::value ));
template <typename EXP>
cholesky_decomposition(
const matrix_exp<EXP>& A
);
bool is_spd(
) const;
const matrix_type& get_l(
) const;
template <typename EXP>
const typename EXP::matrix_type solve (
const matrix_exp<EXP>& B
) const;
private:
matrix_type L_; // lower triangular factor
bool isspd; // true if matrix to be factored was SPD
};
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// Member functions
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <typename matrix_exp_type>
bool cholesky_decomposition<matrix_exp_type>::
is_spd(
) const
{
return isspd;
}
// ----------------------------------------------------------------------------------------
template <typename matrix_exp_type>
const typename cholesky_decomposition<matrix_exp_type>::matrix_type& cholesky_decomposition<matrix_exp_type>::
get_l(
) const
{
return L_;
}
// ----------------------------------------------------------------------------------------
template <typename matrix_exp_type>
template <typename EXP>
cholesky_decomposition<matrix_exp_type>::
cholesky_decomposition(
const matrix_exp<EXP>& A_
)
{
using std::sqrt;
COMPILE_TIME_ASSERT((is_same_type<type, typename EXP::type>::value));
// make sure requires clause is not broken
DLIB_ASSERT(A_.nr() == A_.nc() && A_.size() > 0,
"\tcholesky_decomposition::cholesky_decomposition(A_)"
<< "\n\tYou can only use this on square matrices"
<< "\n\tA_.nr(): " << A_.nr()
<< "\n\tA_.nc(): " << A_.nc()
<< "\n\tA_.size(): " << A_.size()
<< "\n\tthis: " << this
);
#ifdef DLIB_USE_LAPACK
L_ = A_;
const type eps = max(abs(diag(L_)))*std::sqrt(std::numeric_limits<type>::epsilon())/100;
// check if the matrix is actually symmetric
bool is_symmetric = true;
for (long r = 0; r < L_.nr() && is_symmetric; ++r)
{
for (long c = r+1; c < L_.nc() && is_symmetric; ++c)
{
// this is approximately doing: is_symmetric = is_symmetric && ( L_(k,j) == L_(j,k))
is_symmetric = is_symmetric && (std::abs(L_(r,c) - L_(c,r)) < eps );
}
}
// now compute the actual cholesky decomposition
int info = lapack::potrf('L', L_);
// check if it's really SPD
if (info == 0 && is_symmetric && min(abs(diag(L_))) > eps*100)
isspd = true;
else
isspd = false;
L_ = lowerm(L_);
#else
const_temp_matrix<EXP> A(A_);
isspd = true;
const long n = A.nc();
L_.set_size(n,n);
const type eps = max(abs(diag(A)))*std::sqrt(std::numeric_limits<type>::epsilon())/100;
// Main loop.
for (long j = 0; j < n; j++)
{
type d(0.0);
for (long k = 0; k < j; k++)
{
type s(0.0);
for (long i = 0; i < k; i++)
{
s += L_(k,i)*L_(j,i);
}
// if L_(k,k) != 0
if (std::abs(L_(k,k)) > eps)
{
s = (A(j,k) - s)/L_(k,k);
}
else
{
s = (A(j,k) - s);
isspd = false;
}
L_(j,k) = s;
d = d + s*s;
// this is approximately doing: isspd = isspd && ( A(k,j) == A(j,k))
isspd = isspd && (std::abs(A(k,j) - A(j,k)) < eps );
}
d = A(j,j) - d;
isspd = isspd && (d > eps);
L_(j,j) = sqrt(d > 0.0 ? d : 0.0);
for (long k = j+1; k < n; k++)
{
L_(j,k) = 0.0;
}
}
#endif
}
// ----------------------------------------------------------------------------------------
template <typename matrix_exp_type>
template <typename EXP>
const typename EXP::matrix_type cholesky_decomposition<matrix_exp_type>::
solve(
const matrix_exp<EXP>& B
) const
{
COMPILE_TIME_ASSERT((is_same_type<type, typename EXP::type>::value));
// make sure requires clause is not broken
DLIB_ASSERT(L_.nr() == B.nr(),
"\tconst matrix cholesky_decomposition::solve(B)"
<< "\n\tInvalid arguments were given to this function."
<< "\n\tL_.nr(): " << L_.nr()
<< "\n\tB.nr(): " << B.nr()
<< "\n\tthis: " << this
);
matrix<type, NR, EXP::NC, mem_manager_type, layout_type> X(B);
using namespace blas_bindings;
// Solve L*y = b;
triangular_solver(CblasLeft, CblasLower, CblasNoTrans, CblasNonUnit, L_, X);
// Solve L'*X = Y;
triangular_solver(CblasLeft, CblasLower, CblasTrans, CblasNonUnit, L_, X);
return X;
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_MATRIX_CHOLESKY_DECOMPOSITION_H